The source code for this page is available on GitHub.

Control Systems

Interactive control systems using Next.js

Resolution 20
Natural Frequencyωn\omega_n1.0001.000
Damping ratioζ\zeta0.7000.700
ζ=tan4ϕM(4+2tan2ϕM)24tan4ϕM4\zeta = \sqrt[4]{\frac{tan^4{\phi_M}}{(4 + 2tan^2{\phi_M})^2 - 4tan^4{\phi_M} }}
Phase marginϕM\phi_M21.00021.000
ωBW=ωn(12ζ2)+4ζ44ζ2+2\omega_{BW} = \omega_n \sqrt{(1-2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}9.0009.000
%overshoot=e(ζπ/1ζ2)100= \%overshoot = e^{-(\zeta\pi / \sqrt{1 - \zeta^2})} 100 = \ 4.5994.599
Tp=πωn1ζ2= Tp = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \ 4.3994.399

Ts=4ζωn= Ts = \frac{4}{\zeta \omega_n} = \ 5.7145.714

Tr=0.8+2.5ζωn= Tr = \frac{0.8 + 2.5 * \zeta} {\omega_n} = \ 2.5502.550
-10-8-6-4-20246810-10-8-6-4-20246810

Frequency Domain

f(t)=Micos(ωt+ϕ)=Mi(ω)<ϕ(ω)f(t) = M_icos(\omega t + \phi) = M_i(\omega)<\phi(\omega)
G(jω)=G(s)s>jωG(j\omega) = G(s)\Big|_{s->j\omega}

Contrast

L{f(t)}=0f(t)estdt\mathcal{L}\{f(t)\} = \int_{0}^{\infty}f(t)e^{-st}dt
F{f(t)}=0f(t)ejωdt\mathcal{F}\{f(t)\} = \int_{0}^{\infty}f(t)e^{-j\omega}dt

Bode plot

BodeplotBode plot
20logMω20logM - \omega
ϕlogω\phi - log\omega
G(ω)=2jωω2+4G(\omega) = \frac{2-j\omega}{\omega^2 + 4}
G(ω)=1ω2+422+ω2|G(\omega)| = \frac{1}{\omega^2 + 4} \sqrt{2^2 + \omega^2}
ϕ=tan1(ω2)|\phi| = tan^{-1}{(-\frac{\omega}{2})}

Approximation

G(s)=K(s+z1)(s+z2)...(s+zk)sm(s+p1)(s+p2)...(s+pn)G(s) = \frac{K(s + z_1)(s + z_2)...(s + z_k)}{s^m(s + p_1)(s + p_2)...(s + p_n)}

Magnitude

G(jω)=K(s+z1)(s+z2)...(s+zk)sm(s+p1)(s+p2)...(s+pn)|G(j\omega)| = \frac{K|(s + z_1)||(s + z_2)|...|(s + z_k)|}{|s^m||(s + p_1)||(s + p_2)|...|(s + p_n)|}
20logG(jω)=20logK+20log(s+z1)+20log(s+z2)+...20logsm20log(s+p1)20log(s+p2)...20log|G(j\omega)| = 20logK + 20log|(s + z_1)| + 20log|(s + z_2)| + ... - 20log|s^m| - 20log|(s + p_1)| - 20log|(s + p_2)|...

Phase

<G(jω)=K+(s+z1)+...(s+p1)...(s+pn)<G(j\omega) = K + (s + z_1) + ... - (s + p_1) - ... -(s + p_n)

Ex:

G(s)=(s+a)G(s) = (s + a)
20logG(jω)=20log(a2+ω2)1/220log|G(j\omega)| = 20log(a^2 + \omega^2)^{1/2}

At high frequency at w >> a

20logG(jω)=20loga20log|G(j\omega)| = 20loga

At high frequency at w >> a

20logG(jω)=20logω20log|G(j\omega)| = 20log\omega

Decade: 10 times the initial frequency, i.e. 1 decade = 10^0 ~ 10^1 Hz or rad/sec

Phase: 0 at w = 0.1a, 45 at w = a, 90 at w = 10a