The source code for this page is available on GitHub.

Control Systems

Interactive control systems using Next.js

Resolution 20
a 0.02
b 0.04
Natural Frequency Omegan 1, 越大反應時間越短
Damping ratio 0.7, 越大overshoot越小
Tp=πωn1ζ2= Tp = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \ 4.3994.399
%overshoot=e(ζπ/1ζ2)100= \%overshoot = e^{-(\zeta\pi / \sqrt{1 - \zeta^2})} * 100 = \ 4.5994.599

Ts=4ζωn= Ts = \frac{4}{\zeta \omega_n} = \ 5.7145.714

Tr=0.8+2.5ζωn=  Tr = \frac{0.8 + 2.5 * \zeta} {\omega_n} = \ 2.5502.550
-10-8-6-4-20246810-10-8-6-4-20246810
my+cy+ky=0my'' + cy' + ky = 0
y+cmy+kmy=0y'' + \frac{c}{m}y' + \frac{k}{m}y = 0
[y1y2]=[01kmcm][y1y2]\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}
p=a11+a22=cmp = a_{11} + a_{22} = -\frac{c}{m}
q=det(A)=kmq = det(A) = \frac{k}{m}
Δ=p24q=c2m24km=c24mkm2\Delta = p^2 - 4q = \frac{c^2}{m^2} - \frac{4k}{m} = \frac{c^2 - 4mk}{m^2}

No Damping: c=0c = 0

p=0p = 0
q=km>0q = \frac{k}{m} > 0
Δ=4km<0\Delta = -\frac{4k}{m} < 0

Center.

Under Damping: c2<4mkc^2 < 4mk

p=cm<0p = -\frac{c}{m} < 0
q=km>0q = \frac{k}{m} > 0
Δ=c24mkm2<0\Delta = -\frac{c^2 - 4mk}{m^2} < 0

Stable spiral.

Critical Damping: c2=4mkc^2 = 4mk

p=cm<0p = -\frac{c}{m} < 0
q=km>0q = \frac{k}{m} > 0
Δ=0\Delta = 0

Stable degenerated node.

Over Damping: c2>4mkc^2 > 4mk

p=cm<0p = -\frac{c}{m} < 0
q=km>0q = \frac{k}{m} > 0
Δ=c24mkm2>0\Delta = -\frac{c^2 - 4mk}{m^2} > 0

Stable spiral.